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Abstract

An idealized gas–liquid annular flow in a vertical rectangular channel was considered. Point sources of solid spheres
were located on the walls to represent an atomizing wall film. The decrease in the deposition coefficient with increasing
volume fraction, observed in laboratory studies, was examined by using a direct numerical simulation, which does not fully
resolve scales of the size of particles, to calculate the fluid turbulence. The influence of particles on the fluid turbulence was
modeled simply by introducing point forces at particle loci. Inter-particle collisions were also considered. Significant atten-
uation of fluid turbulence at very low concentrations could be observed as resulting from the feedback effect of particles. In
the fluid momentum balance the fluid Reynolds shear stresses decrease with increasing the volume fraction in order to
accommodate the particle forces. This leads to a decrease in the production of fluid turbulence and, therefore, to a decrease
in particle turbulence. Particle turbulence is augmented by elastic inter-particle collisions and can be attenuated by inelastic
inter-particle collisions. The decrease in the deposition coefficient, observed in gas–liquid annular flows, can be explained
by the feedback effect if droplet collisions are highly inelastic. When feedback and elastic inter-particle collisions are con-
sidered, changes in the particle turbulence are mainly associated with elastic inter-particle collisions at large enough volume
fractions.

The observed influence of point forces on fluid turbulence has a kinship to findings on polymer drag reduction in that
polymer molecules (or aggregates) create local stresses in the fluid and the Reynolds shear stresses decrease to accommo-
date these polymer stresses.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The annular pattern for gas–liquid flows is dominant in many applications. Part of the liquid flows as a film
along the wall and part is entrained as drops in a high speed gas flow. A liquid exchange exists whereby the
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film is atomized and drops are deposited on the film. Usual practice is to assume that the rate of deposition,
RD, varies linearly with the bulk concentration of drops, CB:
RD ¼ kDBCB ¼ kDBqpa; ð1Þ
where kDB is the deposition coefficient, qp is the density of the particles and a is the volume fraction. The depo-
sition coefficient is found to be approximated as kDB ¼ rp=

ffiffiffiffiffiffi
2p
p

, where rp is the root mean square of the wall-
normal velocity fluctuations of the drops at a location just outside the viscous wall layer (Hay et al., 1996).

Measurements of RD by Schadel et al. (1990) and by Govan et al. (1988), as well as earlier measurements by
Namie and Ueda (1972) and by Andreussi and Zanelli (1976), show that kDB decreases dramatically with
increasing a (or CB) at large a. Fig. 1 presents laboratory measurements of RD by Schadel et al. (1990) for
upflow of air and water in a 2.54 cm pipe and by Andreussi (1983) for downflow of air and water in a
2.4 cm pipe. These are characterized by a rate of deposition that varies linearly with a at small a and that
is roughly constant at large a, that is, a constant value of kDB at small a and an a�1 variation at large a.
The usual explanations for the observed decreases in kDB are that the fluid turbulence is damped (Namie
and Ueda, 1972) or that drop interactions are occurring (Teixeira et al., 1987; Hay et al., 1996). Experiments
by Hay et al. (1996) showed that changes in kDB could not be explained by changes in the diameters of the
drops along the pipe. Furthermore, measurements of mean fluid velocity profiles seem to suggest that fluid
turbulence was not decreasing. (We will show that this agreement need not indicate the absence of changes
in fluid turbulence.) They, therefore, supported the notion that the decrease in kDB was due to drop encoun-
ters. To a large extent, the exploration of this explanation motivated our research.

The present paper presents results of a study of the suspension associated with an idealized annular flow
described in the next section. A direct numerical simulation which does not resolve scales of the size of the
particles is used. The influence of particles on fluid turbulence is simply represented by introducing point
forces at particle loci. This is the ‘‘point force method’’ used in several previous investigations. The particle
turbulence and, therefore, the deposition coefficient tend to decrease with decreases in fluid turbulence. How-
ever, particle turbulence is also affected by collisions. The effects of particle collisions were studied by solving
the equation of motion of particles entrained in the DNS.

The two main contributions are (1) the provision of an explanation of the results in Fig. 1 and (2) an
examination of the point force method as a means to represent feedback.

A calculation in which the fluid turbulence is represented by a stochastic model is presented in Appendix A.
This fails to capture all of the effects seen in the DNS used in this study and points out the need to capture
small-scale fluid turbulence, particularly when considering particle collisions. Four types of studies were made
in the DNS: (1) a calculation with no feedback and no inter-particle collisions (one-way coupling), (2) calcu-
lations with only feedback (two-way coupling), (3) calculations with only elastic or inelastic inter-particle col-
lisions and (4) calculations with both feedback and inter-particle collisions (four-way coupling).

The damping of fluid turbulence in the presence of a very dilute concentration of solid particles has received
the attention of a number of investigators in recent years. Kulick et al. (1994) used laser-Doppler techniques to
study fluid and solid turbulence in a dilute dispersed downward flow in a channel. Particles with dimensionless
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Fig. 1. Rate of deposition in gas–liquid annular flows.
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inertial time constants of sþp ¼ 300 and sþp ¼ 2100 were used. They found that fluid turbulence decreased with
increasing volume fraction of solid spheres but that the profile of mean fluid velocities was unchanged. Similar
results were obtained by Paris and Eaton (2001), who used particle-image velocimetry to study a dispersed
flow of solid spheres, with sþp ¼ 2600, in a vertical channel. Segura et al. (2004) used a point force method
in a large eddy simulation (LES) to calculate the effect of feedback in the experiments performed by Paris
and Eaton (2001). An attenuation of turbulence of the magnitude observed in laboratory experiments was
not calculated. This could suggest an inadequacy of the point force method to calculate feedback effects. How-
ever, Li et al. (2001) found significant effects of feedback for a suspension of particles, with sþp ¼ 190, by using
the point force method in a DNS.

Yamamoto et al. (2001) examined the effects of inter-particle collisions for dispersed flows of particles with
sþp ¼ 27, 1000, 2100 in a vertical channel. They used LES and the point force method to calculate the fluid
velocity field seen by the particles. Li et al. (2001) included the effect of collisions in their DNS experiments.
They focussed mainly on collisions that are elastic or slightly inelastic.

2. Idealized annular flow

The idealized representation of an annular flow in a rectangular channel used in this study is described by
Mito and Hanratty (2004b). The rectangular channel has a height of 2H and is infinitely wide. Gas is flowing
through the channel turbulently at a constant rate. The Reynolds number, Reb, defined with the bulk mean
velocity and the half-height of the channel, H, is 2260. The Reynolds number, Res, defined with the friction
velocity in the absence of particles, v�0, and H is 150. Cartesian coordinates x1, x2 and x3 are assigned to the
streamwise, wall-normal and spanwise directions. The channel walls are located at x2 = 0 and x2 = 2H and are
considered to be the loci of instantaneous sources of particles. Periodicity is assumed in the x1 and x3

directions.
Droplets are represented by solid spheres with a dimensionless diameter of dþp ¼ dpv�0=m ¼ 1:9 and a density

ratio of qp/qf = 1000, for which the dimensionless Stokesian inertial time constant is sþp ¼ dþ2
p ðqp=qfÞ=18 ¼

200, where qp is the density of the particle and qf is the density of the fluid. This sþp was chosen as represen-
tative of the annular flow regime (Mito and Hanratty, 2004b) and is nearly equal to the time constant char-
acterizing the solid particles used in the studies of Li et al. (2001). (The particle size, dþp ¼ 1:9, was fixed after
the choice of sþp and the density ratio for gas–liquid flow, qp/qf = 1000.) Gravity is assumed to be zero, so the
results can be best applied to vertical flows.

Woodmansee and Hanratty (1969) have shown that atomization of wall films occurs by a rapid growth and
removal of capillary waves which create drops that are entrained by the gas turbulence in the region outside
the viscous wall layer. This would suggest that, in the absence of more data, drops should be placed in the field
at a short distance from the wall with a velocity characteristic of the mean velocity and the root mean square
of the velocity fluctuations just outside the viscous wall layer. This process is modeled by injecting the particles
from x2 = dp/2 with a velocity of ð15v�0; v

�
0; 0Þ and a rate per unit area of RIb. The particles are also injected

from x2 = 2H � dp/2 with a velocity of ð15v�0;�v�0; 0Þ and a rate per unit area of RIt. The coordinates on a wall,
x1 and x3, from which particles are injected are randomly selected. The particles are removed from the field
when they hit a wall. Thus, the analysis differs from most previous computer simulations which allow the par-
ticles to bounce from the wall.

Effects of changes in the injection velocity or in dþp on the rate of deposition for the idealized annular flow
were discussed by Mito and Hanratty (2004a). Increases in the injection velocity have the effect of placing the
particles at a larger distance from the wall before they start to mix due to turbulence. The effects of changes in
the injection velocity were found to be negligibly small. Changes in dþp affect the concentration field and the
rate of deposition because sþp and the distance of the particle center from the wall at deposition change. The
effects of changes in dþp are mainly associated with changes in sþp for the annular flow regime because of
the large contribution of particles in free-flights.

The calculation is done by injecting particles from both walls, with fixed rates, into the single-phase fully
developed turbulent flow. The rates of injection are the same at both walls, RIb = RIt = RI, because of the sym-
metry of the system. The calculation is carried out until a statistically stationary state, for which the concen-
tration of particles is such that the rates of injection and deposition are the same at both walls and the mean
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wall-normal particle velocities are zero at all x2. Disperse flows with various volume fractions are realized by
varying the rate of injection. In this study, the number of the particles injected from an area, 1900m=v�0�
950m=v�0, per time step, Dtþ ¼ Dtv�20 =m ¼ 0:25, is varied from 0.1 to 50. (The volume fraction at a stationary
state in this type of simulation is not known a priori.) It was found there is a critical RI above which a
stationary state is not reached and particle concentration continues to increase with time. Results for non-
stationary cases are also presented.

3. Theoretical considerations

3.1. Feedback effect

Particles have been observed to affect the fluid turbulence even with volume fractions of O(10�5) (Elghob-
ashi and Truesdell, 1993). The feedback effect of particles on fluid flow has been modeled with a point force
method using the assumption that the particles are small enough that eddy shedding does not occur (Crowe
et al., 1977). Squire and Eaton (1990) and Elghobashi and Truesdell (1993) used this approach in a DNS of an
isotropic field and Pan and Banerjee (1996) and Li et al. (2001), in a DNS of a turbulent flow through a
channel.

Trajectories of small spherical particles are calculated with the following equations:
dxi

dt
¼ V i; ð2Þ

dV i

dt
¼ � 3qfCD

4dpqp

V �Uj j V i � Uið Þ ¼ fpi; ð3Þ
where Vi is the velocity of the particle, Ui is the fluid velocity seen by the particle, qp is the density of the
particle, qf is the density of the fluid, and CD is the drag coefficient, which is given by
CD ¼
24

Rep

1þ 0:15Re0:687
p

� �
; ð4Þ
where the particle Reynolds number, Rep, is defined with dp and the magnitude of the relative velocity,
jV � Uj. Because of the assumption of a large density ratio, qp/qf = 1000, the lift force is ignored in Eq. (3).

The force of particles on the fluid motion at a grid point is represented as the sum of the reaction forces
exerted by the particles whose centers exist in the computational cell surrounding the grid point (Li et al.,
2001):
F i ¼ �
qp

qf

V p

V cell

XN cell

k¼1

fpik ¼ �
C
qf

fpi

� �
cell
; ð5Þ
where a monodisperse flow (dp = constant) is assumed, V pð¼ pd3
p=6Þ is the volume of a particle, Vcell is the

volume of the computational cell, Ncell is the number of particles in the cell, fpik is the fpi defined by Eq.
(3) for the kth particle, C = qpVpNcell/Vcell is the concentration of particles and hfpiicell is the average point
force of the Ncell particles. (Thus the reaction force exerted by a particle is considered in a single computational
cell even when the particle exists across multiple cells. Then the numerical effective size of a particle is the
size of the computational cell in which the center of the particle exists.) The fluid phase is assumed to be
incompressible (qf = constant). Then the Navier–Stokes equation is given as
qf

oUi

ot
þ U j

oUi

oxj

� �
¼ � oP

oxi
þ l

o2Ui

oxj oxj
þ qf F i; ð6Þ
where oP/oxi is a component of the pressure gradient and l = qfm is the coefficient of viscosity of the fluid.

3.2. Inter-particle collision

Inter-particle collisions also have been observed to affect the particle turbulence with volume fractions of
O(10�3). These effects have been calculated in a Lagrangian framework with a deterministic method (Tanaka
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and Tsuji, 1991; Lun and Liu, 1997; Li et al., 2001; Yamamoto et al., 2001) and with a stochastic method (Oes-
terle and Petitjean, 1993; Sommerfeld, 2001). The latter needs to be modified in, as yet, an undefined way,
when it is used for inhomogeneous turbulence. In this study, a deterministic approach was used. The detection
method for inter-particle collisions, described by Chen et al. (1998) and Li et al. (2001), was used. The volume
fraction is small enough that only binary collisions need to be considered. The effect of the fluid on colliding
particles is neglected during the time step, in which collision occurs, on the assumption that the effect of the
impact is dominant.

Rotation of colliding particles is known to affect the trajectories of the particles after the collision (Lun and
Savage, 1987). However, many uncertainties exist in the calculation of the angular velocity of a particle on its
trajectory. Therefore, in the calculations, rotation of a particle is assumed to be zero on its trajectory and when
inter-particle collisions are occurring. A collision occurs between two spherical particles, 1 and 2, with equal
diameters. The changes of velocities, V1 and V2, are described by
k � V 01 � V 02
	 


¼ �ek � V1 � V2ð Þ; ð7Þ
k� V 01 � V 02

	 

¼ �bk� V1 � V2ð Þ; ð8Þ
where V 01 and V 02 are the velocities of the particles after the collision, k is the unit vector along the center line
from particle 1 to particle 2, e is the coefficient of restitution and b is the roughness coefficient (Lun and Sa-
vage, 1987). We test two types of collision models: (1) an elastic model, for which e = 1 and b = �1, (2) inelas-
tic models, for which the relative tangential velocity of particles after a collision is assumed to be zero, that is,
b = 0 (Campbell and Brennen, 1985) and several coefficients of restitution, 0, 0.1, 0.4, 0.7, 1, are considered.
Interactions of droplets are thought to be inelastic, so the calculations with elastic inter-particle collisions give
limiting behaviors for the gas–liquid annular flow. Furthermore, they allow an examination of similarities with
previous studies for disperse flows of solid particles.

The occurrence of inter-particle collisions is examined by calculating the trajectories of particles during a
time step with a first-order Euler explicit method. A three-dimensional equispaced 95 · 30 · 96 lattice that
is set in the channel is used to restrict the volume in which a search of intersections of trajectories (Chen
et al., 1998; Li et al., 2001) is made. The searching volume for each particle is the cell in which the considered
particle exists plus its surrounding 26 cells (17 cells when the considered particle exists in a cell attached to a
wall). The dimensions of each cell are 20m=v�0, 10m=v�0, 10m=v�0 in the x1, x2, x3 directions. These are large enough
to capture the trajectories of a pair of colliding particles during the time step Dt+ = 0.25.

3.3. Momentum balance in the fluid phase

In this section, the momentum balance in the fluid phase is considered. It is represented by an ensemble
average of the Navier–Stokes equation
qf

oUi

ot
þ o

oxj
UjU i þ ujui

	 
� �
¼ � oP

oxi
þ l

o2Ui

oxj oxj
þ qf F i; ð9Þ
where ui is the fluctuating component of Ui. An integration of the streamwise component of Eq. (9) from x2 to
H (where the Reynolds stress is zero because of symmetry) gives
� oP
ox1

ðH � x2Þ ¼ �qfu1u2 þ l
oU 1

ox2

� qf

Z H

x2

F 1ðx2Þdx2. ð10Þ
At the wall (x2 = 0), u1u2 ¼ 0, and lðoU 1=ox2Þ is designated as �sW, so Eq. (10) gives the pressure drop as the
sum of two terms
� oP
ox1

¼ �sW

H
� qfF 1B; ð11Þ
where F1B is the bulk mean streamwise point force, which is obtained by taking an ensemble average of Eq.
(5); that is,
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F 1B ¼
1

H

Z H

0

F 1ðyÞdy ¼ �
qp

qf

V p

V c

NBfp1B ¼ �
CB

qf

fp1B; ð12Þ
where NB is the average number of particles in Vc, the channel volume, fp1B is the average of fp1 for all the
particles and CB = qpVpNB/Vc is the bulk concentration. It is noted in Eq. (11) that a positive value of F1B

contributes to a decrease in the magnitude of the pressure drop, which is defined as �ðoP=ox1Þ.
3.4. Momentum balance in the solid phase

A momentum balance in the solid phase is
oCV i

ot
þ oCV jV i

oxj
¼ Cf pi. ð13Þ
For a fully developed flow in a channel, an ensemble average of Eq. (13) gives
o

ox2

Cv2vi ¼ C�f pi; ð14Þ
where vi is the fluctuating component of Vi and v2vi, �f pi are concentration weighted averages. For a symmetric
field, an integration of Eq. (14) from y = x2 to the channel center, y = H, gives
�Cv1v2 ¼
Z H

x2

C�f p1 dy ¼ �qf

Z H

x2

F 1 dy; ð15Þ
where the ensemble average of the streamwise component of Eq. (5), qfF 1 ¼ �C�f p1, is used. Eq. (15) shows
that the integral of the particle force term may be considered to represent a particle Reynolds shear stress. By
substituting Eq. (15) into Eq. (10), a relation for the fluid Reynolds shear stress is derived as
�qfu1u2 ¼ �
oP
ox1

ðH � x2Þ � l
oU 1

ox2

þ Cv1v2. ð16Þ
Eq. (15) at the wall (x2 = 0) gives the momentum flux of the solid phase to the wall, that is,
�CW v1v2ð ÞW ¼ CBfp1BH ¼ �qf F 1BH . ð17Þ
Thus, when � v1v2ð ÞW < 0 (f1B < 0 and F1B > 0) the particles are, on average, supplying streamwise momentum
to the fluid. When � v1v2ð ÞW > 0 (f1B > 0 and F1B < 0) the particles are, on average, extracting streamwise
momentum from the fluid. In the former case the momentum supplied by particles contributes to a decrease
in the pressure drop, which is shown by substituting Eq. (17) into Eq. (11):
� oP
ox1

¼ 1

H
�sW � CW v1v2ð ÞW
 �

. ð18Þ
The pressure gradient is the sum of components representing molecular momentum transfer to the wall and
net momentum transfer due to particle injection and deposition. Thus it is possible to have a decrease in drag,
�sW, and an increase in �oP=ox1 if � v1v2ð ÞW > 0.
3.5. Balance equation for fluid Reynolds stresses

The balance equation for fluid Reynolds stresses, when feedback is modeled with the point force method, is
given as
o

ot
uiuj þ Uk

o

oxk
uiuj ¼ P ij þ T ij þPij þ Dij þ eij þ VPFij; ð19aÞ
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where
P ij ¼ � uiuk
oU j

oxk
þ ujuk

oU i

oxk

� �
: Production; ð19bÞ

T ij ¼ �
o

oxk
uiujuk : Turbulent transport; ð19cÞ

Pij ¼ �
1

qf

ui
op
oxj
þ uj

op
oxi

� �
: Velocity pressure-gradient correlation; ð19dÞ

Dij ¼ m
o

2

ox2
k

uiuj : Viscous diffusion; ð19eÞ

eij ¼ �2m
oui

oxk

ouj

oxk
: Dissipation; ð19fÞ

VPFij ¼ uifj þ ujfi : Velocity-point force correlation; ð19gÞ
where fi is the fluctuating component of the point force, Fi. The left side of Eq. (19a) is zero for a statistically
stationary case in the system being considered. It is noted that direct contributions of particle forces to the
transport of the fluid Reynolds stresses are represented by the velocity-point force correlation shown as Eq.
(19g). Of course, particle forces can have an indirect effect by influencing other terms in the balance equation.

The balance equation for u2
1 might be of most importance since production is directly contributed by the

fluid Reynolds shear stress, u1u2, that is described by the mean momentum balance in the fluid. The transport
of u2

1 in a statistically stationary case is given as
0 ¼ �2u1u2

oU 1

ox2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Production

� o

ox2

u2
1u2|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Turbulent transport

� 2

qf

u1

op
ox1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Velocity pressure-gradient correlation

þm
o2

ox2
2

u2
1|fflfflfflfflffl{zfflfflfflfflffl}

Viscous diffusion

�2m
ou1

oxk

� �2

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Dissipation

þ2u1f1|fflfflffl{zfflfflffl}
Velocity point-force correlation

. ð20Þ
The transport equations of u2
2, u2

3 and �u1u2 are, respectively, given as
0 ¼ � o

ox2

u3
2 �

2

qf

u2

op
ox2

þ m
o2

ox2
2

u2
2 � 2m

ou2

oxk

� �2

þ 2u2f2; ð21Þ

0 ¼ � 2

qf

u3
op
ox3

þ m
o

2

ox2
2

u2
3 � 2m

ou3

oxk

� �2

þ 2u3f3; ð22Þ

0 ¼ u2
2

oU 1

ox2

þ o

ox2

u1u2
2 þ

1

qf

u1

op
ox2

þ u2

op
ox1

� �
þ m

o2

ox2
2

�u1u2ð Þ þ 2m
ou1

oxk

ou2

oxk
� u1f2 þ u2f1

	 

ð23Þ
4. Numerical method

4.1. Description of the DNS

The DNS of turbulent fluid flow in a channel is performed in a box with dimensions of 1900m=v�0 in the
streamwise direction (x1), 300m=v�0 in the wall-normal direction (x2), and 950m=v�0 in the spanwise direction
(x3). A pseudospectral fractional-step method (Lyons et al., 1991) is used for the spatiotemporal discretization.
The feedback is calculated by using a first-order Euler explicit method. The computational grid is
128 · 65 · 128. The resolutions in the streamwise and spanwise directions are Dxþ1 ¼ 15 and Dxþ3 ¼ 7:4, where
the superscript plus represents a variable made dimensionless with v�0 and m. The resolutions in the wall-normal
direction vary from Dxþ2 ¼ 0:18 at the wall to Dxþ2 ¼ 7:4 at the channel center. No slip boundary conditions are
used at x2 = ±H and periodicity is assumed in the x1 and x3 directions. The time step is Dt+ = 0.25. The fluid
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velocity seen by the particles is calculated using a mixed spectral-polynomial interpolation scheme developed
by Kontomaris et al. (1992). The spatiotemporal resolution is the same as used by Lyons et al. (1991) to
calculate single-phase turbulent flow.

4.2. Particle tracking

Displacements and velocities of the particles which do not collide with any particles during the time step are
calculated by using a second-order Adams–Bashforth method. A first-order Euler explicit method is used for
the times of injection and just after inter-particle collisions. Particles are removed from the field when they are
at a distance of dp/2 from a wall. Fluid velocities seen by particles in the next time step are obtained by inter-
polating the velocities obtained from the DNS, since we use explicit methods to calculate particle trajectories.

4.3. Calculation of statistics

Simulations were monitored by recording volume fractions, skin frictions and pressure drops. After con-
firming that these parameters stopped evolving and that both the fluid and solid phases were fully developed,
calculations of statistics were continued until enough samples were recorded to capture the statistically sta-
tionary state. The convergence of the statistics is checked with (1) the mean wall-normal particle velocities,
which should be zero at all x2 in a statistically stationary state, and (2) the agreement between the calculated
particle Reynolds shear stresses and Eq. (15). In the calculations, if jV þ2 j < 3� 10�4 at all xþ2 (the criterion 1),
the criterion 2 was satisfied. The duration that is needed to calculate the statistics varies with the volume frac-
tion. Durations ranging from 2000 to 30; 000m=v�20 were used to calculate the statistics for volume fractions
ranging from 1 · 10�5 (about 1500 particles in an instantaneous field) to 2.5 · 10�3 (about 375,000 particles
in an instantaneous field).

The influence of changes in the computational grid and the size of the time step was not studied. Conver-
gence of the calculation was checked with the criteria described above. In all calculations the momentum bal-
ance for the solid phase, as given by Eq. (15), was satisfied, so numerical momentum loss (or gain) related to
the resolution (or due to dealiasing done in the DNS) is nearly zero at all x2. In addition, the results shown in
the next section capture many important aspects of laboratory measurements.

5. Results

5.1. Effect of feedback

The effects of feedback, without consideration of inter-particle collisions, are examined in this subsection.
Before reviewing the results the mean particle Reynolds number is examined to check the validity of the use of
the point force method. Fig. 2 presents the mean particle Reynolds numbers, Rep ¼ dþp ½Vþ �Uþ�, for several
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Fig. 2. Mean particle Reynolds numbers.
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volume fractions. Values for the calculation in which feedback is not considered are also presented by the solid
line. Similar results were obtained for other calculations in which elastic or inelastic collisions are considered
in addition to feedback. The mean particle Reynolds number decreases with increasing volume fraction. It is
small enough to be consistent with the use of the point force method. In the near-wall region ðxþ2 6 20Þ the
mean particle Reynolds number is large because of the effect of injected particles, whose contribution
decreases with increasing volume fraction.

Fig. 3 presents the mean velocities of the fluid and the solid phase in a statistically stationary state at
a = 4.9 · 10�4, which is the maximum volume fraction that could be realized in steady-state calculations that
consider only feedback. Particles are, on average, lagging the fluid in the center region of the channel, xþ2 > 60,
and are, on average, leading the fluid in the near-wall region. This relation between V 1 and U 1 reflects the
effects of particle inertia on wall-normal mixing. Similar relations are observed at different volume fractions.
However, the differences between V 1 and U 1 decrease with increasing a because of the attenuation of the par-
ticle turbulence shown in Fig. 11.

The difference between V 1 and U 1 causes the mean streamwise point forces, F 1, exerted on the fluid by par-
ticles shown in Fig. 4. In the center region, xþ2 > 60, F 1 is negative, so the fluid is decelerated by the particles.
In the near-wall region, xþ2 < 60, the particles accelerate the fluid. The magnitude of F 1 increases with increas-
ing a, that is, the concentration of point forces.

The friction velocity is obtained from the calculated fluid velocity gradient at the wall. Fig. 5a shows the
mean fluid velocities made dimensionless with the actual friction velocities, v*, for the statistically stationary
cases in which 0.1, 1, 1.5, 2, 2.5 particles are injected from the wall over a computational time step. Changes in
the friction velocity appear as changes in the bulk flow rate made dimensionless with v* (since the dimensional
volumetric flow is kept constant). The shapes of the mean fluid velocity profiles are seen to be almost
unchanged with changes in particle concentration for a < 5 · 10�4. The field becomes non-stationary and
the volume fraction increases with time when the number of particles injected per time step is 2.6 or more.
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Fig. 5b shows the changes in the dimensionless mean fluid velocity profile with increasing time when particles
are injected at a rate of 2.7 per time step. The calculation was continued until a = 3 · 10�3. The shape of the
mean fluid velocity profile changes with increasing volume fraction for a > ca. 1 · 10�3. The ratios of the
actual friction velocity to the friction velocity for the single-phase flow are presented in the figures. Feedback
is seen to have the effect of reducing the skin friction. This effect is of increasing importance with increasing a.
It is noted that the changes in the skin friction are small in the range of a for which statistically stationary
states can be realized.

Fig. 6 presents the fluid Reynolds shear stresses for the cases shown in Fig. 5. It is noted that the fluid
Reynolds shear stress significantly decreases with increasing a for the stationary cases even when the change
in the mean fluid velocity profile is not so large (see Fig. 5a). For the non-stationary case, the fluid Reynolds
shear stress decreases drastically with increasing time and is seen to be approaching zero at all x2.
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The root-mean-square value of the wall-normal fluid velocity fluctuations is attenuated with increasing a as
shown in Fig. 7 for both the stationary and non-stationary cases. The drastic decreases in the fluid turbulence,
observed at a > 10�3 for the non-stationary case, should be noted.

Attenuations of the streamwise and spanwise fluid velocity fluctuations are shown in Fig. 8. The per cent
decrease in the streamwise fluid velocity fluctuations is not as large as observed for the other components. This
is associated with increases in the spatial gradients of the mean fluid velocity with increasing a, shown in Fig. 5a
at 20 < xþ2 < 100, even though the changes in the shape of the mean fluid velocity profile are seen to be small.

Instantaneous fluid fluctuating velocity fields in the center plane are presented in Fig. 9 for the single-phase
flow, a statistically stationary case at a = 4.9 · 10�4 and the non-stationary case at a = 3.0 · 10�3. Dots rep-
resent locations of particles. (They do not represent the actual volume occupied by the particles.) Significant
attenuation of the fluid turbulence is noted in Fig. 9b. The particles in the center plane are seen to be almost
uniformly distributed and to be affecting all turbulent structures. The small-scale fluid turbulence is seen
almost to vanish for the non-stationary case shown in Fig. 9c. The streamwise velocity fluctuations are seen
to be banded. They cannot be characterized as turbulent. Clustering of particles is seen but the correlation
between the clusters and the fluid velocity field is not obvious.
Fig. 9. Instantaneous fluid fluctuating velocity fields at the center plane. Dots represent locations of particles. Their sizes are magnified 5
times. (a) Single-phase flow. (b) A statistically stationary case at a = 4.9 · 10�4. (c) A non-stationary case at a = 3.0 · 10�3.



Fig. 10. Instantaneous fluid velocity fields in a cross section perpendicular to the direction of mean flow. Dots represent locations of
particles. Their sizes are magnified 5 times. (a) Single-phase flow. (b) A statistically stationary case at a = 4.9 · 10�4. (c) A non-stationary
case at a = 3.0 · 10�3.
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Fig. 10 presents instantaneous fluid velocity fields in a cross section perpendicular to the direction of mean
flow. A drastic attenuation of the longitudinal vortical structures near the wall with increasing a is clearly
shown. The fluid turbulence has almost completely disappeared for the non-stationary field at
a = 3.0 · 10�3. Clustering of particles is seen in this cross section at this volume fraction.

The wall-normal particle velocity fluctuations for stationary cases are presented in Fig. 11. It is noted that
the particle turbulence for the simulation with one-way coupling is much smaller than the fluid turbulence
(shown in Fig. 7a at xþ2 > 20) because the inertia of particles inhibits them from following the fluid turbulence
(Reeks, 1977; Lee et al., 1989). It is larger than the fluid turbulence at xþ2 < 20 because of the contribution of
free-flight particles that move from the outer flow to the wall region (Brooke et al., 1994; Mito and Hanratty,
2004a). It decreases with increasing a because of the decrease in the fluid turbulence caused by feedback.

The product of the mean concentration and the cross correlation of v1 and v2 defines a mean momentum
flux of the solid phase (see Eq. (14)) or the negative of a particle shear stress due to particle turbulence (see Eq.
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Fig. 11. Effect of feedback on the wall-normal particle velocity fluctuation.
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(16)). The negative of the particle velocity correlation, �v1v2, obtained from calculations that include only
feedback is presented in Fig. 12. The values for the one-way coupling simulation are smaller than the fluid
Reynolds shear stresses for the single-phase flow because the inertia of the particles prevents them from fol-
lowing the fluid fluctuations. The correlation �v1v2 becomes negative at the wall because the particles are, on
average, supplying streamwise momentum to the fluid (see Eq. (17)). The magnitude of the particle Reynolds
stress decreases with increasing a as already seen for v2 rms. However, �Cv1v2 increases (see Fig. 13).

The concentration profiles of the particles for the statistically stationary cases, made dimensionless with the
rate of injection, RI, and the friction velocity when particles are not present, v�0, are presented in Fig. 13. The
dimensionless concentration increases with increasing a at all x2 because the decrease in the wall-normal par-
ticle turbulence is accompanied by a decrease in the deposition coefficient. An increase in the concentration
with increasing the distance from the wall at xþ2 > 20 is observed for all the cases considered. This is caused
by turbophoresis (Caporaloni et al., 1975; Reeks, 1983) whereby particles tend to move from regions of high
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turbulence to regions of low turbulence. The accumulation of particles in the near-wall region occurs because
the particles carried from the outer-region by free-flight get trapped or decelerated in the low turbulence region
(Brooke et al., 1994). The large accumulation near the wall at a = 4.9 · 10�4 reflects the small particle turbu-
lence in the near-wall region, shown in Fig. 11.

Fig. 14 presents the rate of deposition for statistically stationary cases, for which RD equals the rate of injec-
tion, n/Dt+A+, where n is the number of particles injected from a wall per time step and A+ is the dimension-
less area of the wall. The deposition coefficient defined with RD = kDBqpa is plotted in the dimensionless form
kþDB ¼ kDB=v�0. The values of RD and kþDB are also shown for the one-way coupling simulation, for which the
effect of a on the fluid turbulence can be ignored. The feedback effect is evident at a > 10�5. The value of kþDB is
50% of that for one-way coupling at a � 2 · 10�4. The rate of deposition, RD, is 50% of that for one-way cou-
pling at a � 3 · 10�4.

The asymptotic behavior of kþDB at large a is defined with Eq. (1) as kDB = (RI)MAX/(qpa), where (RI)MAX is
the maximum value of RI for which a statistically stationary state can be realized. In the flow system consid-
ered, (RI)MAX occurs when the number of particles injected from a wall per time step is between 2.5 and 2.6.
The value of 2.6 was used to test the proposed asymptotic behavior of kþDB � a�1 shown in Fig. 14.

It is noted that the calculations in Fig. 14 show the same behavior as indicated in Fig. 1. The dimensionless
rate of deposition, n/Dt+A+, reaches a maximum value of approximately 6 · 10�6. The dimensionless deposi-
tion coefficient, kþDB, is seen to show the asymptotic behavior of kþDB � a�1 at a � 7 · 10�4. Using the friction
velocities measured in the laboratory measurements by Schadel et al. (1990) and by Andreussi (1983), v* = 3–
8 m/s, the maximum rate of deposition, shown in Fig. 14, can be calculated as a dimensional value within the
range from 0.064 to 0.17 kg/m2s. Both the maximum deposition rate and the volume fraction at which the rate
of deposition reaches the maximum value appear to be slightly smaller than those shown in Fig. 1. The dif-
ference between the calculations and the laboratory measurements can be associated with particle interactions.

5.2. Effect of inter-particle collisions

This subsection considers the effect of collisions when there is no change in fluid turbulence. Two collision
models are considered: (1) an elastic model with e = 1 and b = –1 (see Eqs. (6) and (7)) and (2) a highly inelas-
tic model for which e = 0.1 and b = 0. The particles see the single-phase fluid turbulence since feedback is not
considered. An investigation of the effects of e and b that uses a modified Langevin equation to calculate the
fluid velocities seen by particles is presented in Appendix A. Only statistically stationary cases are considered
in this subsection.

The ratios of the deposition coefficient, kDB, to that for the one-way coupling simulation are presented in
Fig. 15. An effect of elastic collisions on kDB appears at a > 10�4. It is noted that elastic collisions increase kDB

because they increase particle turbulence. The inelastic collision model used in Fig. 15 is considered to be an
extreme case (which might be characteristic of droplet interactions). Inelastic collisions are seen to decrease
kDB. However, the effect on kDB is much smaller, in the range of a considered, than that associated with feed-
back (see Fig. 14). It is of interest to note the effect of inelastic collisions was found to be much greater when a
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stochastic model that does not correctly capture small-scale turbulence is used. In fact a kDB � a�1 relation is
found at small a (see Appendix A).

Fig. 16 presents the wall-normal particle velocity fluctuations for the cases shown in Fig. 15. Elastic colli-
sions cause the wall-normal turbulence to increase with increasing a (consistent with the increase in the depo-
sition coefficient) because of the redistribution of particle turbulence among the v1, v2 and v3 components. The
particle turbulence decreases with increasing a when only inelastic collisions are occurring. However, the
changes are much smaller than those observed in simulations that consider elastic collisions or feedback.
Inelastic collisions attenuate all components of the particle turbulence (not shown).

5.3. Effect of feedback and inter-particle collisions

The combined effect of feedback and collisions is now discussed. When only feedback was considered
decreases in fluid turbulence was accompanied by decreases in particle turbulence. This is associated with a
decrease in the deposition coefficient and, therefore, an increase in particle concentration. This, in turn,
increases the feedback, so a critical rate of injection exists beyond which a stationary state cannot be reached.
Inelastic collisions decrease particle turbulence so, if anything, collisions should further decrease the deposi-
tion coefficient. Elastic collisions, however, increase particle turbulence, so increases in particle concentration
need not lead to large decreases in the deposition coefficient. Stationary states are therefore reached for the
entire range of injection rates that is considered.

Because the effect of the inelastic collisions is much smaller than the effect of feedback, simulations that
considered both feedback and the inelastic collisions produced almost the same results as simulations that con-
sidered only feedback. Therefore, only calculations for elastic inter-particle collisions are considered for sta-
tistically stationary cases for which the rate of injection equals the rate of deposition.

Fig. 17 presents the mean velocities of the particles and of the fluid at a = 1.5 · 10�3. As already seen in the
calculation with only feedback, shown in Fig. 3, particles are, on average, leading the fluid in the near-wall
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region and are, on average, lagging the fluid in the center region. A large increase in the particle mean velocity
in the near-wall region, which is caused by the large increase in the rate of injection, is noted.

Concentration profiles, Cv�0=RI, calculated using both feedback and elastic inter-particle collisions are pre-
sented in Fig. 18. The dimensionless concentration increases with increasing rate of injection at xþ2 > 15, but
decreases at xþ2 < 15.

The most striking results are the drastic attenuation of the fluid turbulence and the small change in particle
turbulence with increasing a. Fig. 19a presents the wall-normal fluid velocity fluctuations for the cases shown
in Fig. 18. Fig. 19b presents the fluid Reynolds shear stresses. At a = 1.5 · 10�3, the fluid turbulence is seen to
be completely damped and the fluid Reynolds shear stresses are nearly zero at all xþ2 .
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Fig. 18. Effect of feedback and elastic inter-particle collisions on the concentration profile.
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The intensities of wall-normal particle velocity fluctuations are presented in Fig. 20. Surprisingly, the
changes in the wall-normal particle turbulence with changing a are very small compared to the changes in
the fluid turbulence. This occurs because the feedback effect which attenuates the wall-normal particle turbu-
lence (by decreasing fluid turbulence) is counterbalanced by an increase caused by elastic collisions. The par-
ticle turbulence increases with increasing a in the near-wall region because of the increase in the rate of
injection. (It is noted that particles are injected from a wall with the wall-normal velocity component of
1v�0.) The magnitude of the gradient of the v2 rms increases with increasing a at xþ2 > 15, so that the turbopho-
resis increases with increasing a. At a = 1.5 · 10�3, the v2 rms is smaller in the center region than the value cal-
culated for one-way coupling. Since the fluid turbulence at a = 1.5 · 10�3, shown in Fig. 19a, is very small, the
particle turbulence is considered to be mainly produced by elastic inter-particle collisions, which should be
large close to the wall because of the contributions of injected particles.

The ratios of the deposition coefficients, calculated for the cases in which both feedback and inter-particle
collisions are considered, compared to those calculated for one-way coupling, are presented in Fig. 21. The
values for the calculations that considered only feedback are also presented. The deposition coefficients for
the calculations with feedback and inelastic inter-particle collisions are nearly equal to those for the calcula-
tions with only feedback because of the relatively small effect of the inelastic collisions compared to the effect
of feedback, shown in Fig. 15. Since the inelastic collisions have an effect of reducing the deposition coefficient,
the deposition coefficients obtained from calculations with feedback and inelastic collisions are slightly smaller
than those for the calculations with only feedback. The deposition coefficients obtained from calculations with
feedback and elastic collisions are larger than those for the calculations with only feedback. This reflects the
important contribution of elastic collisions to particle turbulence, shown in Fig. 15. It is noted that the changes
in the deposition coefficients for a > 10�3 mainly reflect changes in particle turbulence caused by the elastic
inter-particle collisions and are almost independent of fluid turbulence. Of interest is the possibility that the
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deposition coefficient calculated with feedback and elastic collisions might continue to decrease with increas-
ing a and eventually show an a�1 behavior. However, calculations at such large volume fractions are not easily
executed with a DNS.

The laboratory measurements in Fig. 1 show that the rate of deposition is roughly constant at large a,
where kDB � a�1. Fig. 21 shows that this behavior is realized for the calculation with feedback and inelastic
inter-particle collisions. However, it appears at a slightly smaller a than is observed in Fig. 1 as pointed out in
the comparison between the calculations that considered only feedback, shown in Fig. 14, and the laboratory
measurements. This behavior is not realized in the region of a < 4 · 10�3 for the calculation with feedback and
elastic inter-particle collisions. The use of an elastic inter-particle collision model does not produce the ten-
dency observed in laboratory studies of gas–liquid annular flows. Thus we suggest that an inelastic inter-par-
ticle collision model which represents an intermediate inelasticity between the elastic and inelastic models,
considered in this study, might better capture the asymptotic behavior.

Fig. 22 presents the dimensionless mean pressure gradients obtained from calculations that consider feed-
back. The mean pressure drop for the single-phase flow, which is equal to the pressure drop for the flows with-
out feedback, is denoted by the dashed line. As shown in Eq. (11) the mean pressure drop contains positive
contributions from the fluid resisting stress of the wall, �sW, and negative contributions from the bulk mean
point force, F1B. As shown in Eq. (18) the latter may be looked upon as resulting from the net exchange of
momentum to the wall due to injected and depositing particles. The pressure drop decreases with increasing
a at 10�4 < a < 1 · 10�3 mainly because of the increases in F1B, which represents momentum supplied to the
fluid by solid particles, as shown in Eq. (17). At very large a the fluid turbulence is close to zero so the fluid
velocity is given by Eq. (10) with u1u2 ¼ 0. The solution of this equation gives the fluid velocity profile and �sW.
The latter will increase with increasing a, as indicated in Fig. 22 for a > 1 · 10�3. This accounts for the increase
in �oPþ=oxþ2 with increasing a shown in Fig. 22 for large a.

6. Fluid momentum and energy balances for the fluid

6.1. Motivation

Some understanding of the role of feedback in decreasing fluid turbulence can be obtained by considering
momentum and energy balances for the fluid.

6.2. Momentum balance for the fluid, considering only feedback

The terms in Eq. (10) made dimensionless with qf, v�0 and m are presented in Fig. 23a for a = 1.2 · 10�4 and in
Fig. 23b for a = 4.9 · 10�4. The contribution of the pressure gradient, represented by �ðoPþ=oxþ1 ÞðHþ � xþ2 Þ is

the left side of Eq. (10). It equals the sum of the contributions from the Reynolds stress, �uþ1 uþ2 , the viscous
stress, oUþ1 =oxþ2 , and the negative of the particle forces on the fluid (or the force of the fluid on the solids) in
the region between xþ2 to H+, �

R Hþ

xþ
2

F þ1 dxþ2 , which is equal to �ðC=qfÞvþ1 vþ2 (see Eq. (15)).
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Fig. 23. Effect of feedback on the fluid momentum balance. (a) a = 1.2 · 10�4. (b) a = 4.9 · 10�4.
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For a single-phase flow the contribution of the pressure gradient is unity at xþ2 ¼ 0. It is noted that the Rey-
nolds stress for the fluid is smaller when particles are present. This arises partly because the pressure gradient
decreases and more importantly because the net force of the particles on the fluid in the region between x2 and
H partially balances the force due to pressure gradient, so that smaller values of the Reynolds stress are needed
to balance the pressure-gradient forces. Thus, the fluid Reynolds shear stresses decrease to accommodate the
contribution due to particle forces.

In considering the contributions to the fluid Reynolds shear stress, it might be useful to use a balance equa-
tion for the fluid Reynolds shear stress, which is derived using Eqs. (16) and (18) as
�qfu1u2 ¼
H � x2

H
�sW � l

oU 1

ox2

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Viscous shear stresses

þ Cv1v2 �
H � x2

H
CW v1v2ð ÞW

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Particle forces

. ð24Þ
Thus the fluid Reynolds stress is represented as the resultant of the viscous shear stress and the stress exerted
by particles. With this consideration, the large decrease in the fluid Reynolds shear stress at a = 4.9 · 10�4 is
seen to be caused mainly by the large increase in the particle forces, that is, the volume fraction, because the
difference between V 1 and U 1 decreases with increasing a.

6.3. Energy balance equation for the fluid, considering only feedback

A striking effect of feedback is the decrease in fluid turbulence. Therefore, it is of interest to consider the
balance equation for u2

1, Eq. (20). The only term representing a direct effect of the particles on the fluid tur-
bulence is velocity-point force correlation 2u1f1, where f1 is a component of the fluctuations in the point force.
The dominant term in Eq. (20) is the production, �2u1u2ðoU 1=ox2Þ.
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Fig. 24a presents calculated profiles of the production, made dimensionless with v�0 and m. It is noted that
this decreases with increasing a because of the decrease in the fluid Reynolds shear stress. Similar plots are
presented in Fig. 24b for the dimensionless velocity-point force correlation. It is seen from Eq. (20) that posi-
tive values of this quantity have the effect of increasing u2

1; negative values cause a decrease in u2
1. From

Fig. 24b it is seen that the velocity-point force correlation should cause a decrease in u2
1. However,

Fig. 24 shows that the production terms are an order of magnitude larger than the velocity-point force cor-
relation so the effect of particles on fluid turbulence is mainly caused by decreases in the Reynolds shear
stress.

The correlation coefficients, �u1u2=u1 rmsu2 rms, for the calculations with only feedback are presented in
Fig. 25 for both stationary and non-stationary cases. The correlation coefficients for the stationary cases
shown in Fig. 25a with a < 5 · 10�4 are almost the same as what is found for single-phase flows. For the
non-stationary case shown in Fig. 25b, large changes in the correlation coefficient appear at a > 9 · 10�4.
These are reflected in the dramatic changes in the instantaneous velocity fields shown in Figs. 9 and 10.

7. Concluding remarks

As pointed out in Section 1 and in Fig. 1, droplet deposition measurements in gas–liquid annular flows
show a remarkably large decrease in the deposition rate coefficient at relatively small volume fractions. Results
from this paper suggest that point forces of particles on a fluid, due to a slip, cause decreases in fluid turbu-
lence. The particle turbulence (and, therefore, the deposition coefficient) changes with fluid turbulence, but
particle turbulence is also affected by droplet collisions. Elastic collisions enhance particle turbulence and
at large enough volume concentrations could be controlling.

When drops interact they distort. This leads to inelastic effects and, in particular, could reduce the relative
tangential motion of two colliding particles to zero. These inelastic collisions have the effect of reducing
particle turbulence.

Thus, the decrease in the deposition coefficient in annular flow can be explained by a change in fluid tur-
bulence caused by the presence of particles and by droplet collisions which are inelastic. Calculations based on
this model are remarkably close to experimental data presented in Fig. 1.

The study supports previous work by Li et al. (2001) which shows that calculations in a DNS based on the
point force method can predict large changes in fluid turbulence. Similar calculations in an LES (Yamamoto
et al., 2001; Segura et al., 2004) produced much smaller degradation of fluid turbulence than indicated by
experiments. Furthermore, we have found that calculations in which fluid turbulence is represented with a sto-
chastic model fail to capture the effect of inelastic collisions. Both of these results suggest that it is necessary to
represent accurately small-scale turbulence.

The system considered in this paper differs from other studies in a number of ways: The main focus is on
particle turbulence and particle deposition. Particles are removed from the system when they strike a wall.
Thus particle bouncing from the wall is not considered. Interactions of droplets are usually different from
interactions of solid particles in that they are inelastic and might be represented by a model which does not
allow tangential slip. Because the injected particles have a larger velocity than the depositing particles there
is a net momentum transfer from the wall. This makes a negative contribution to the pressure gradient, so
decreases in the pressure drop can be realized.

The widely quoted experimental studies of downward flow of a suspension of spheres in a channel by
Eaton and his coworkers (Kulick et al., 1994; Paris and Eaton, 2001) involves a situation in which particles
striking the wall have a higher velocity than particles rebounding from the wall. Thus, there is a net momen-
tum transfer to the wall due to the particle–wall interaction. This can lead to an increase in the pressure
drop. A number of their experiments with particle inertial time constants of sþp ¼ 300; 2100; 2600 showed
decreases in the fluid turbulence energy similar to what is observed in this study. This suggests that the mech-
anism for the reducing the fluid turbulence could be the same as what has been observed in our study. Some
support for this can be obtained from a consideration of the momentum balance (see Eqs. (10) and (24) and
Fig. 23). For both cases, the point force contributions give rise to a decrease in the Reynolds shear stress
needed to satisfy conservation of momentum. This, in turn, leads to a decrease in the production of fluid
turbulence.
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It is of interest to note that the observed influence of point forces on fluid turbulence has a kinship to find-
ings on polymer drag reduction. Here polymer molecules (or aggregates) create local stresses in the turbulence
and the Reynolds shear stresses decrease to accommodate these polymer stresses (Warholic et al., 1999).

Acknowledgements

This work is supported by DOE under grant DEFG02-86ER 13556. Computer resources have been
provided by the National Center for Supercomputing Applications located at the University of Illinois.

Appendix A. Test of inter-particle collision models using a stochastic simulation

For cases in which the feedback effect is not considered, a modified Langevin equation can be used to pro-
vide a stochastic representation of fluid velocity fluctuations seen by a particle (Mito and Hanratty, 2003).
This approach was used to examine the effects of various types of inter-particle collision models.

Jointly Gaussian random variables which correctly give all of the second moments of the fluid velocity fluc-
tuations are used for the forcing functions. The mean velocities of the fluid and the statistics of the turbulence
that appear in the model were obtained from a DNS (Mito and Hanratty, 2002). We follow the simple
approach, described by Mito and Hanratty (2003), that uses the time constants characterizing the dispersion
of fluid particles to define the time constants in the model.

Displacements and velocities of particles are calculated using the method described in Section 4.2. The
modified Langevin equation is solved by using a fully implicit method in order to specify the fluid velocities.

The elastic inter-particle collision model, characterized by e = 1 and b = – 1 in Eqs. (7) and (8), and several
inelastic inter-particle collision models, characterized by e = 0, 0.1, 0.4, 0.7, 1 and b = 0, are considered. The
use of the stochastic simulation enabled us to investigate effects of a large range of e for the inelastic collision
model with b = 0 and effects of a ranging from 7 · 10�6 to 2 · 10�2 for each inter-particle collision model.

Fig. 26 presents dimensionless deposition coefficients, kþDB, calculated with the elastic collision model and
several inelastic collision models. The deposition coefficients, obtained in the calculations with a DNS to sim-
ulate fluid velocities seen by particles, in which feedback is not taken into account, shown in Fig. 20, are also
presented by the filled symbols. The deposition coefficients for one-way coupling are presented for both cal-
culations with the modified Langevin equation and with the DNS. Comparisons between the calculations with
the modified Langevin equation and with the DNS can be done by using their results for the elastic collisions
and for the inelastic collisions with e = 0.1. They lead to the conclusion that the model can qualitatively cap-
ture the behaviors that were observed with the DNS when the elastic collisions were considered and that the
error increases with increasing a and when the inelastic collisions are considered. These errors are caused
because the Langevin equation cannot represent small-scale fluid turbulence correctly; that is, particles in a
small volume see uncorrelated fluid velocity fluctuations. Because particles tend to cluster when they undergo
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inelastic collisions, the error increases for the calculation with the inelastic collisions. Thus the results obtained
with this approach are only used to obtain a qualitative representation of behavior when inter-particle colli-
sions are considered.

Elastic collisions are seen to cause an increase in the deposition coefficient. With the assumption of b = 0
(Campbell and Brennen, 1985), the deposition coefficient is seen to display the non-linear behavior, kDB � a�1,
at a > 4 · 10�4 for e = 0.1. The inter-particle collision models used in the present study with a DNS represen-
tation of fluid turbulence were selected by a consideration of this result.
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